Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and Semidefinite Programming Synchronization

نویسنده

  • Mihai Cucuringu
چکیده

Abstract. We consider the classic problem of establishing a statistical ranking of a set of n items given a set of inconsistent and incomplete pairwise comparisons between such items. Instantiations of this problem occur in numerous applications in data analysis (e.g., ranking teams in sports data), computer vision, and machine learning. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose usefulness has been demonstrated in numerous applications in recent years in computer vision and graphics, sensor network localization and structural biology. Its least squares solution can be approximated by either a spectral or a semidefinite programming (SDP) relaxation, followed by a rounding procedure. We show extensive numerical simulations on both synthetic and real-world data sets (Premier League soccer games, a Halo 2 game tournament and NCAA College Basketball games), which show that our proposed method compares favorably to other ranking methods from the recent literature. Existing theoretical guarantees on the group synchronization problem imply lower bounds on the largest amount of noise permissible in the data while still achieving exact recovery of the ground truth ranking. We propose a similar synchronization-based algorithm for the rank-aggregation problem, which integrates in a globally consistent ranking many pairwise rank-offsets or partial rankings, given by different rating systems on the same set of items, an approach which yields significantly more accurate results than other aggregation methods, including Rank-Centrality, a recent state-of-the-art algorithm. Furthermore, we discuss the problem of semi-supervised ranking when there is available information on the ground truth rank of a subset of players, and propose an algorithm based on SDP which is able to recover the ranking of the remaining players, subject to such hard constraints. Finally, synchronization-based ranking, combined with a spectral technique for the densest subgraph problem, makes it possible to extract locally-consistent partial rankings, in other words, to identify the rank of a small subset of players whose pairwise rank comparisons are less noisy than the rest of the data, which other methods are not able to identify. We discuss a number of related open questions and variations of the ranking problem in other settings, which we defer for future investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic Algorithms for Rank Aggregation and Other Ranking and Clustering Problems

We consider ranking and clustering problems related to the aggregation of inconsistent information. Ailon, Charikar, and Newman [1] proposed randomized constant factor approximation algorithms for these problems. Together with Hegde and Jain, we recently proposed deterministic versions of some of these randomized algorithms [2]. With one exception, these algorithms required the solution of a li...

متن کامل

Ranking Sports Teams and the Inverse Equal Paths Problem

The problem of rank aggregation has been studied in contexts varying from sports, to multi-criteria decision making, to machine learning, to academic citations, to ranking web pages, and to descriptive decision theory. Rank aggregation is the mapping of inputs that rank subsets of a set of objects into a consistent ranking that represents in some meaningful way the various inputs. In the rankin...

متن کامل

Rank Aggregation for Course Sequence Discovery

In this work, we adapt the rank aggregation framework for the discovery of optimal course sequences at the university level. Each student provides a partial ranking of the courses taken throughout his or her undergraduate career. We compute pairwise rank comparisons between courses based on the order students typically take them, aggregate the results over the entire student population, and the...

متن کامل

A goal programming procedure for ranking decision making units in DEA

This research proposes a methodology for ranking decision making units byusing a goal programming model.We suggest a two phases procedure. In phase1, by using some DEA problems for each pair of units, we construct a pairwisecomparison matrix. Then this matrix is utilized to rank the units via the goalprogramming model.

متن کامل

An Unsupervised Learning Algorithm for Rank Aggregation

Many applications in information retrieval, natural language processing, data mining, and related fields require a ranking of instances with respect to a specified criteria as opposed to a classification. Furthermore, for many such problems, multiple established ranking models have been well studied and it is desirable to combine their results into a joint ranking, a formalism denoted as rank a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.01070  شماره 

صفحات  -

تاریخ انتشار 2015